Histone Deacetylases Associated with the mSin3 Corepressor Mediate Mad Transcriptional Repression

نویسندگان

  • Carol D Laherty
  • Wen-Ming Yang
  • Jian-Min Sun
  • James R Davie
  • Edward Seto
  • Robert N Eisenman
چکیده

Transcriptional repression by Mad-Max heterodimers requires interaction of Mad with the corepressors mSin3A/B. Sin3p, the S. cerevisiae homolog of mSin3, functions in the same pathway as Rpd3p, a protein related to two recently identified mammalian histone deacetylases, HDAC1 and HDAC2. Here, we demonstrate that mSin3A and HDAC1/2 are associated in vivo. HDAC2 binding requires a conserved region of mSin3A capable of mediating transcriptional repression. In addition, Mad1 forms a complex with mSin3 and HDAC2 that contains histone deacetylase activity. Trichostatin A, an inhibitor of histone deacetylases, abolishes Mad repression. We propose that Mad-Max functions by recruiting the mSin3-HDAC corepressor complex that deacetylates nucleosomal histones, producing alterations in chromatin structure that block transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone Deacetylases and SAP18, a Novel Polypeptide, Are Components of a Human Sin3 Complex

An important event in gene expression is the covalent modification of histone proteins. We have found that the mammalian transcriptional repressor Sin3 (mSin3) exists in a complex with histone deacetylases HDAC1 and HDAC2. Consistent with the observation that mSin3-mediated repression of transcription involves the modification of histone polypeptides, we found that the mSin3-containing complex ...

متن کامل

Identification and characterization of SAP25, a novel component of the mSin3 corepressor complex.

The transcriptional corepressor mSin3 is associated with histone deacetylases (HDACs) and is utilized by many DNA-binding transcriptional repressors. We have cloned and characterized a novel mSin3A-binding protein, SAP25. SAP25 binds to the PAH1 domain of mSin3A, associates with the mSin3A-HDAC complex in vivo, and represses transcription when tethered to DNA. SAP25 is required for mSin3A-media...

متن کامل

Mad-max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3

The bHLH-ZIP protein Mad heterodimerizes with Max as a sequence-specific transcriptional repressor. Mad is rapidly induced upon differentiation, and the associated switch from Myc-Max to Mad-Max heterocomplexes seem to repress genes normally activated by Myc-Max. We have identified two related mammalian cDNAs that encode Mad-binding proteins. Both possess sequence homology with the yeast transc...

متن کامل

Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway.

Transcriptional repression mediated by corepressors N-CoR and SMRT is a critical function of nuclear hormone receptors, and is dysregulated in human myeloid leukemias. At the present time, these corepressors are thought to act exclusively through an mSin3/HDAC1 complex. Surprisingly, however, numerous biochemical studies have not detected N-CoR or SMRT in mSin3- and HDAC1-containing complexes. ...

متن کامل

Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor.

The N-CoR/SMRT complex containing mSin3 and histone deacetylase (HDAC) mediates transcriptional repression by nuclear hormone receptors and Mad. The proteins encoded by the ski proto-oncogene family directly bind to N-CoR/SMRT and mSin3A, and forms a complex with HDAC. c-Ski and its related gene product Sno are required for transcriptional repression by Mad and thyroid hormone receptor (TRbeta)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 89  شماره 

صفحات  -

تاریخ انتشار 1997